
 

 

Civic Data Lab Support Project 

all.txt 

 

 

 

 

Deployment 
Concept all.txt 

Version 
1.0.1 
Authors 
Rahkakavee Baskaran (&effect), Jan Dix (&effect) 
Created at 
January 30th, 2024 
Updated at 
March 19th, 2025 
License 
CC-BY 4.0 

https://creativecommons.org/licenses/by/4.0/deed.en


Content 

1 Possible Obstacles ................................................................................. 4 

2 Architecture Recommendations ............................................................. 4 

2.1 Authentication and Authorization using FastAPI Users ................................................. 4 

2.2 Database Integration using SQLAlchemy and Alembic ................................................. 4 

2.3 Dependency Management using Poetry ...................................................................... 5 

2.4 Code Quality using Linter, Static Type Checker and Git Hooks ..................................... 5 

2.5 Testing using Pytest ..................................................................................................... 5 

3 Hosting Concepts ................................................................................... 6 

3.1 Docker ........................................................................................................................ 6 

3.2 Provisioning Infrastructure with Terraform ................................................................. 7 

3.3 Configuring Infrastructure with Ansible ....................................................................... 7 

3.4 Deployments using Stack Deploy ................................................................................. 7 

3.5 Optional: Monitoring and Alerting ............................................................................... 8 

3.6 Optional: Managed Database ..................................................................................... 8 

3.7 Optional: Virtual Private Network ................................................................................ 8 

4 CI/CD Pipeline ........................................................................................ 9 

4.1 Build Stage .................................................................................................................. 9 

4.2 Testing Stage .............................................................................................................. 9 

4.3 Development Deployment Stage ................................................................................. 9 

4.4 Acceptance Deployment Stage (Optional) ................................................................. 10 

4.5 Production Deployment Stage ................................................................................... 10 

5 Cost Estimation .................................................................................... 10 

5.1 Scaleway .................................................................................................................. 10 

5.2 Hetzner ...................................................................................................................... 11 

5.3 Recommendation ....................................................................................................... 12 



 

Deployment Concept all.txt March 19th, 2025 Page 3 of 13 & 

6 Git Flow ................................................................................................ 12 

 

  



 

Deployment Concept all.txt March 19th, 2025 Page 4 of 13 & 

1 Possible Obstacles 
[redacted] 

2 Architecture Recommendations 

2.1 Authentication and Authorization using FastAPI Users 

FastAPI Users1 simplifies the implementation of user authentication and authorization in web 
applications built with FastAPI. It provides ready-to-use components for handling user 
registration, authentication, and token-based authorization, making it easier for developers to 
integrate user management functionality into their FastAPI projects. With support for OAuth2, 
JWT, and other authentication methods, FastAPI Users streamlines the process of securing 
and managing user access within web applications. We recommend using the cookie transport 
in combination with a database strategy. If the API should be used outside the browser the 
transport can be complemented using bearer scheme. Additionally, FastAPI Users allows to 
easily integrate HTTPX OAuth2 to authenticate users with external services like Google or 
Microsoft. This could be an additional feature for paying customers. 

2.2 Database Integration using SQLAlchemy and Alembic 

SQLAlchemy3 is a Python SQL toolkit and Object-Relational Mapping (ORM) library that 
facilitates interaction with relational databases. It provides a high-level API for database 
operations, allowing developers to express database queries using Python code rather than 
raw SQL. SQLAlchemy supports a variety of database backends, offers a powerful and 
flexible query language, and simplifies the mapping of database tables to Python objects for 
seamless integration in applications. SQLAlchemy can be comined with multiple dialects. We 
recommend using PostgreSQL using the psycopg (psycopg3) driver4 5. 

Alembic6 is a database migration tool for SQLAlchemy, designed to automate the process of 
evolving database schemas over time. It allows developers to manage database changes 
through Python scripts, making it easy to version and apply schema modifications while 
keeping track of database schema history. 

 

1 https://fastapi-users.github.io/fastapi-users/latest/ 
2 https://frankie567.github.io/httpx-oauth/ 
3 https://www.sqlalchemy.org/ 
4 https://www.psycopg.org/psycopg3/docs/ 
5 https://docs.sqlalchemy.org/en/20/dialects/postgresql.html#module-sqlalchemy.dialects.postgresql.psycopg 
6 https://alembic.sqlalchemy.org/en/latest/ 



 

Deployment Concept all.txt March 19th, 2025 Page 5 of 13 & 

2.3 Dependency Management using Poetry 

Python dependency management involves specifying and organizing project dependencies, 
historically done through tools like pip and a requirements.txt file. However, using 
requirements.txt alone can lead to issues with version conflicts. Therefore, we recommend 
using Poetry7. Poetry simplifies dependency management by combining package and project 
configuration in a single file, ensuring consistency across development, testing, and 
deployment environments, while also offering features like semantic versioning and 
dependency resolution, enhancing the overall development experience. Additionally, Poetry 
allows developers to define multiple dependencies groups. We recommend working with a 
main, the default, and a development group.8 Development dependencies are only installed in 
the local environment. 

2.4 Code Quality using Linter, Static Type Checker and Git Hooks 

Black9 and Flake810 are linters to enforce a unified code format in the project. Black and Flake8 
can be installed as development dependencies and can be directly used in all popular 
development environments (e.g.: PyCharm, Visual Studio Code). 

Mypy11 is a static type checker for Python that allows developers to add type annotations to 
their code and catch potential errors during development by analysing and enforcing type 
correctness. 

Pre-commit helps managing and maintaining pre-commit hooks for code repositories. These 
hooks are scripts or commands that run automatically before each commit, allowing tasks like 
code formatting, linting, and other checks to ensure code quality and consistency. 

We recommend combining all these tools to improve the developer experience and ensure a 
certain code quality on the project. We recommend installing the tools as development 
dependencies and as pre-commit hooks. Additionally, we recommend installing isort12 to sort 
the module imports. The selection is based on our experience and there are other tools that 
have a similar purpose and will work in a similar way. 

2.5 Testing using Pytest 

The purpose of writing tests is to systematically verify that your code functions correctly, 
ensuring that it behaves as expected under different scenarios and edge cases. The tests can 
be constantly enhanced when errors and edge cases are detected. Pytest13 is a testing 
framework offering a simple and readable syntax, making it easy to write and maintain tests. 

 
7 https://python-poetry.org/ 
8 https://python-poetry.org/docs/managing-dependencies/#dependency-groups 
9 https://black.readthedocs.io/en/stable/ 
10 https://flake8.pycqa.org/en/latest/ 
11 https://mypy-lang.org/ 
12 https://pycqa.github.io/isort/ 
13 https://docs.pytest.org/en/8.0.x/ 



 

Deployment Concept all.txt March 19th, 2025 Page 6 of 13 & 

By creating and running tests with Pytest, developers can catch and address bugs early in the 
development process, improve code reliability, and facilitate code maintenance and 
refactoring with confidence. 

3 Hosting Concepts 

3.1 Docker 

Docker14 is a platform for developing, shipping, and running applications in containers, which 
are lightweight, portable, and self-sufficient units that encapsulate everything needed to run 
the application. A Dockerfile is a script defining the steps and configuration for building a 
Docker image, specifying the application's environment, dependencies, and execution 
instructions. The Dockerfile packs the Python runtime and all dependencies to run the API. A 
Docker image is a lightweight, standalone, and executable package that encapsulates all the 
necessary components, including code, runtime, libraries, and system tools, to run a software 
application. A Docker image can usually be executed in any Docker runtime on any operating 
system that uses the same underlying CPU architecture (e.g.: amd64). Hence, developers can 
develop locally on a MacBook, but the image can also be started on a Debian server. A Docker 
container is a runnable instance of a Docker image, encapsulating an application along with its 
dependencies and providing an isolated and consistent execution environment. 

Docker containers can be started in several ways in server environments. Docker can be used 
in production by directly running containers using the Docker runtime, where individual 
containers are managed and orchestrated manually, suitable for smaller-scale deployments 
or simpler use cases. Docker Swarm Mode15 is a built-in orchestration tool in Docker that allows 
clustering and managing a group of Docker hosts, providing native support for service 
discovery and load balancing, making it a lightweight and easy-to-use solution for 
orchestrating containers in production. Kubernetes16 is a powerful, open-source container 
orchestration platform that automates the deployment, scaling, and management of 
containerized applications, providing advanced features like declarative configuration, 
automated scaling, and extensive ecosystem support, making it suitable for complex and 
large-scale production environments. 

We recommend using Docker Swarm Mode as it provides useful features like service discovery 
and load balancing but is relatively easy to manage for a small team. 

 
14 https://www.docker.com/ 
15 https://docs.docker.com/engine/swarm/ 
16 https://kubernetes.io/ 



 

Deployment Concept all.txt March 19th, 2025 Page 7 of 13 & 

3.2 Provisioning Infrastructure with Terraform 

Terraform17 is an open-source infrastructure as code (IaC) tool used for provisioning and 
managing cloud infrastructure resources in a declarative and version-controlled manner. The 
Terraform state represents the current state of deployed infrastructure and is used to track 
resource attributes and manage changes. Providers are plugins that interface with different 
cloud or infrastructure platforms, allowing users to define and manage resources across 
various environments using a consistent Terraform configuration language. Both Scaleway18 
and Hetzner19 provide and maintain their own Terraform providers directly interacting with 
their APIs. 

We recommend using Terraform to configure the infrastructure, like virtual machines, 
databases, etc., in a reproducible way. 

3.3 Configuring Infrastructure with Ansible 

Ansible20 is an open-source automation tool that simplifies configuration management, 
application deployment, and task automation in IT environments through a declarative 
language and agentless architecture. Ansible modules extend the capabilities of Ansible by 
providing pre-built, reusable components that enable users to interact with various systems, 
services, and resources, allowing for seamless automation across diverse infrastructure 
components. 

We recommend using Ansible installing dependencies, Docker runtime, and configuring the 
virtual machines (e.g.: setting up Docker Swarm Mode). 

3.4 Deployments using Stack Deploy 

A Compose file can be used to deploy application to a Docker runtime running in Swarm Mode. 
The file describes the application's structure and settings in a simple YAML file. This file acts as 
a blueprint, defining how the different parts of the application should run and communicate. 
The file can also be tested locally using Docker Compose. 

When the user deploys this configuration to Docker Swarm, the platform takes care of 
distributing and managing the application across multiple servers, ensuring it runs reliably and 
efficiently. This simplifies the deployment process, allowing non-technical individuals to 
describe their application's requirements without diving into technical details. 

We recommend using Stack Deploy in a combination with Docker Context allowing us to 
directly start applications from GitLab workers. 

 
17 https://www.terraform.io/ 
18 https://registry.terraform.io/providers/scaleway/scaleway/latest/docs 
19 https://registry.terraform.io/providers/hetznercloud/hcloud/latest/docs 
20 https://www.ansible.com/ 



 

Deployment Concept all.txt March 19th, 2025 Page 8 of 13 & 

3.5 Optional: Monitoring and Alerting 

We recommend using the Grafana stack to monitor the infrastructure and optionally also your 
application. Grafana21 is an open-source dashboard for monitoring and observability, 
providing a customizable and feature-rich interface to visualize and analyse metrics, logs, and 
other data. Prometheus22 is a monitoring and alerting toolkit designed for collecting and 
storing time-series data, enabling the retrieval and analysis of detailed performance metrics 
from various systems. Loki23 is a log aggregation system that complements Prometheus, 
allowing efficient storage and querying of logs while seamlessly integrating with Grafana for 
comprehensive observability across metrics and logs. Scaleway automatically stores system 
related metrics and logs, like CPU time, memory usage, etc., in their internal cockpit which is 
based on the Grafana stack.24 

Additionally, we recommend to setup an error monitoring and tracking tool to help you 
identifying and resolving issues in your applications. You are automatically informed if your 
application runs into any errors. Sentry25 and Honeybadger26 both provide a free tier for a 
single developer. The team tier has a similar price. Both providers provide an easy integration 
for FastAPI. However, we recommend Sentry as it provides a larger variety for different 
Python tools and more programming languages. 

Furthermore, we recommend to setup an external downtime monitor to keep track of your 
application uptime. We recommend using UptimeRobot27 because the free tier is sufficient for 
small teams. 

3.6 Optional: Managed Database 

We recommend using a managed databased. A managed database is a database service 
provided by a cloud provider that handles administrative tasks such as setup, maintenance, 
scaling, and backups, allowing users to focus on application development rather than database 
management. The advantages of a managed database are simplified operations, automatic 
updates, enhanced security, and scalability, reducing the operational overhead for businesses 
while ensuring efficient and reliable database performance. 

3.7 Optional: Virtual Private Network 

A Virtual Private Network (VPN) is a technology that establishes a secure and encrypted 
connection over the internet, allowing users to access a private network. It is commonly used 
to create a secure connection between remote users and corporate networks, ensuring 
confidentiality and protecting data from unauthorized access or interception. We recommend 

 
21 https://grafana.com/grafana/ 
22 https://prometheus.io/ 
23 https://grafana.com/products/cloud/logs/ 
24 https://www.scaleway.com/en/docs/observability/cockpit/ 
25 https://sentry.io/welcome/ 
26 https://www.honeybadger.io/ 
27 https://uptimerobot.com/pricing/ 



 

Deployment Concept all.txt March 19th, 2025 Page 9 of 13 & 

using Tailscale28. Tailscale allows to create a direct connection to virtual machines without 
opening any ports. Additionally, Tailscale can be used to authenticate and authorize SSH 
connections. However, the premium tier costs $18 per user per month. Hence, we recommend 
implementing a VPN at later stage. 

4 CI/CD Pipeline 
The Continuous Integration/Continuous Deployment (CI/CD) pipeline is an automated process 
in software development that combines continuous integration, where code changes are 
regularly integrated and tested, with continuous deployment, automating the delivery of 
applications to production environments. It streamlines the development lifecycle, enhancing 
collaboration, code quality, and the speed at which software updates can be delivered to end-
users. The CI/CD pipeline implements the hosting concept. It combines testing of code, the 
provisioning of infrastructure elements and the deployment of the services to different 
environments. Each of these steps is separated into a single stage. Each stage depends on the 
execution of the previous stage to ensure that only working code is shipped to the production 
environment. 

4.1 Build Stage 

During the build stage the Docker image is built and uploaded to a Docker registry. The registry 
allows to keep different versions of the image, caching for faster build times, and easy 
rollbacks to previous versions of the application in the case of an incident or problem. We 
recommend using the built-in GitLab container registry because it allows to keep code and 
images in the same place, and it does not create any additional costs.29 

4.2 Testing Stage 

During the testing stage the code is tested using pytest based on pre-defined tests. The tests 
are executed using the Docker image that is built in the previous stage. 

4.3 Development Deployment Stage 

During the development deployment stage the Docker image is pulled on the development 
environment and a container is started. This step can be automated for a certain branch, e.g.: 
develop (see Git Flow), or alternatively manually executed. In the beginning, we recommend to 
manually execute this step. This step requires the build stage successfully executed. 
Additionally, we can also configure this step to be dependent on the testing stage. 

 
28 https://tailscale.com/ 
29 https://docs.gitlab.com/ee/user/packages/container_registry/ 



 

Deployment Concept all.txt March 19th, 2025 Page 10 of 13 & 

4.4 Acceptance Deployment Stage (Optional) 

During the acceptance deployment stage the Docker image is pulled on the acceptance 
environment and a container is started. The acceptance stage is optionally and can be used to 
verify the release before deploying to the production environment. Alternatively, the stage can 
also be used to release beta features that should only be available to smaller group of testers. 
This step can be automated for a certain branch, e.g.: main (see Git Flow), or alternatively 
manually executed. In the beginning, we recommend to manually execute this step. This step 
requires the build stage successfully executed. We recommend configuring this step to be 
dependent on the testing stage. 

4.5 Production Deployment Stage 

During the production deployment stage, the Docker image is pulled on the production 
environment and a container is started. This step can be automated for a certain branch, e.g.: 
main (see Git Flow), or alternatively manually executed. In the beginning, we recommend to 
manually execute this step. This step requires the build stage successfully executed. We 
recommend configuring this step to be dependent on the testing stage. 

5 Cost Estimation 

5.1 Scaleway 

Scaleway is a cloud computing service provider based in France, offering a range of cloud 
services, including virtual servers, storage, and networking solutions. Known for its competitive 
pricing and flexibility, Scaleway targets developers, startups, and enterprises seeking scalable 
and cost-effective cloud infrastructure. The offered services are GDPR conform, and the data 
centers are in Paris (France), Amsterdam (Netherlands), and Warsaw (Poland). A data 
processing agreement (DPA) is automatically in effect and can be downloaded from the 
website.30 

Service Costs in € (per Month) 

Virtual Machine Production Environment 

(PLAY2-MICRO, 4 vCPUs, 8 GB RAM, PARIS 1) 
44.06€ 

Virtual Machine Acceptance Environment 

(PLAY2-NANO, 2 vCPUs, 4 GB RAM, PARIS 1) 
24.35€ 

 
30 https://www.scaleway.com/en/contracts/ 



 

Deployment Concept all.txt March 19th, 2025 Page 11 of 13 & 

Virtual Machine Development Environment 

(PLAY2-NANO, 2 vCPUs, 4 GB RAM, PARIS 1) 
24.35€ 

Database Production Environment 

(DB-PLAY2-NANO, 2 vCPUs, 4 GB RAM, Standalone 
Mode, PARIS) 

36.50€ 

Database Acceptance and Development Environment 

(DB-PLAY2-PICO, 1 vCPUs, 2 GB RAM, Standalone 
Mode, PARIS) 

21.97€ 

Total 151.32€ 

5.2 Hetzner 

Hetzner is a German web hosting and data center company providing a variety of hosting 
services, dedicated servers, and cloud solutions. Known for its reliable infrastructure and 
competitive pricing, Hetzner caters to a broad range of clients, from individual developers to 
large enterprises, offering hosting solutions to meet diverse needs. The offered services are 
GDPR conform, and the data centers are in Nuremberg (Germany), Falkenstein (Germany), 
Helsinki (Finland), Ashburn (Virginia, USA), and Hillsboro (Oregon, USA). We recommend 
hosting the application in European data centers. A DPA can be separately signed.31 

Service Costs in € (per Month) 

Virtual Machine Production Environment 

(CPX31, 4 vCPUs, 8 GB RAM) 
13.60€ 

Virtual Machine Acceptance Environment 

(CX21, 2 vCPUs, 4 GB RAM) 
5.35€ 

Virtual Machine Development Environment 

(CX21, 2 vCPUs, 4 GB RAM) 
5.35€ 

Database All Environments* 

(VSERVER MC60, 8 vCPUs, 32GB RAM) 

54.00€ 

 
31 https://docs.hetzner.com/general/general-terms-and-conditions/data-privacy-faq 



 

Deployment Concept all.txt March 19th, 2025 Page 12 of 13 & 

Total 78.30€ 

* The database is not comparable to the managed database instance offered by Scaleway. 
Hetzner offers managed servers for webhosting32. These offers include a managed database. 
However, this database does not provide fine-graded security options like creating multiple 
users or restricted users with read-only access. Additionally, the database is also reachable 
from the internet and cannot be used with private networks offered as part of the cloud 
offering. 

5.3 Recommendation 

We recommend using Scaleway, because it provides a variety of managed services like 
managed databases, transactional emails, and monitoring. This allows the all.txt team to focus 
on the product instead of focussing on the infrastructure. Scaleway has significantly higher 
entry costs, but Hetzner does not provide any services beyond virtual machines. The  

6 Git Flow 
We recommend to early adopt and define a way to structure the work with Git. As all.txt is 
product-focused organisation, we recommend using Git Flow. Git Flow is based on Vincent 
Driessen’s branching model.33 It defines a set of branching conventions and best practices. It 
introduces a structured workflow with two main branches, “main” for production-ready code 
and “develop” for ongoing development. Feature branches, release branches, and hotfix 
branches are created to facilitate organized feature development, release preparation, and 
bug fixes, making it easier for teams to collaborate and manage the software development 
life cycle. Daniel Kummer’s cheatsheet provides a good introduction and overview on the 
different operations.34 

  

 
32 https://www.hetzner.com/managed-server/ 
33 https://nvie.com/posts/a-successful-git-branching-model/ 
34 https://danielkummer.github.io/git-flow-cheatsheet/index.html 



 

Deployment Concept all.txt March 19th, 2025 Page 13 of 13 & 

About &effect: 

Our goal is to make data science an integral part of decision-making in the public and social 
sector. To this end, we develop impact-oriented data products at the intersection between 
social sciences, data science and software development. 

 

 

 

Contact: 

Jan Dix 

jan.dix@and-effect.com 


